8 Information inequalities and a dependent Central Limit Theorem Oliver Johnson

نویسنده

  • Oliver Johnson
چکیده

We adapt arguments concerning information-theoretic convergence in the Central Limit Theorem to the case of dependent random variables under Rosenblatt mixing conditions. The key is to work with random variables perturbed by the addition of a normal random variable, giving us good control of the joint density and the mixing coefficient. We strengthen results of Takano and of Carlen and Soffer to provide entropy-theoretic, not weak convergence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J ul 2 00 3 Fisher Information inequalities and the Central Limit Theorem Oliver

We give conditions for an O(1/n) rate of convergence of Fisher information and relative entropy in the Central Limit Theorem. We use the theory of projections in L2 spaces and Poincaré inequalities, to provide a better understanding of the decrease in Fisher Information implied by results of Barron and Brown. We show that if the standardized Fisher Information ever becomes finite then it conver...

متن کامل

N ov 2 00 1 Fisher Information inequalities and the Central Limit Theorem Oliver

We give conditions for an O(1/n) rate of convergence of Fisher information and relative entropy in the Central Limit Theorem. We use the theory of projections in L2 spaces and Poincaré inequalities, to provide a better understanding of the decrease in Fisher information implied by results of Barron and Brown. We show that if the standardized Fisher information ever becomes finite then it conver...

متن کامل

Density Estimators for Truncated Dependent Data

In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...

متن کامل

Entropy inequalities and the Central Limit Theorem

Motivated by Barron (1986, Ann. Probab. 14, 336–342), Brown (1982, Statistics and Probability: Essays in Honour of C.R. Rao, pp. 141–148) and Carlen and So er (1991, Comm. Math. Phys. 140, 339–371), we prove a version of the Lindeberg–Feller Theorem, showing normal convergence of the normalised sum of independent, not necessarily identically distributed random variables, under standard conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001